
An Ensemble of Deep Convolutional 
Networks for Automatic Film Score 

Genre Recognition
Toward a Discovery-Rich Recommendation Agent



Problem:  
Background Track 

Bottleneck
Video and audio are growing exponentially

Overwhelming choice leads to sub-optimal matches—
a loss for music supervisors, project producers, and recording 

artists



Solution: Recommender Agent

Automatic tagging means improved search, increased discovery, 
and more novel background tracks



MIR hears features  
Humans hear fit
Music Genre? Mood-Markers? Film Genre?

What captures ‘music fit’?

Explanatory gap: “[Search] users are not able to define their 
needs in terms of low-level audio parameters (e.g., spectral 

shape features)” 
(Kaminskas and Ricci 2012) 



Hypothesis: 
Film Genre can be modeled 

directly from soundtracks
Method: 

Tag samples with associated film genres

Use the labeled dataset to train a neural network 
 

Predict the appropriate application of unlabeled audio



Timbre = Genre?
Timbre features are work-horse of most Automatic Genre Recognition

Timbre fundamental to actual human perception of genre (+ source ID, 
phonemes, mood, valence)

If timbre is sufficient for classification, a lot of dimensionality can be discarded 
from the dataset



Timbre: Fundamental to Music Classification

Subjects can estimate the emotional content, style and decade of release of 
previously unheard recordings significantly better than chance, after exposure of 

only 400 ms 

Even subjects with amusia, who are unable to identify any song by name, 
performed equally well on judgments of style and emotion 

(Krumhansl 2010)
 



Timbre: Fundamental to Music Classification

 
“if genre identification…required the prior classifications of component features like 
melody, bass, harmony, and rhythm, then it is unlikely that such rapid identification 
would have been possible. That is, from a single tone one could not infer any reliable 

information about melody or rhythm.” 
(Gjerdingen and Perrott 2008) 



Timbre: Best Feature for Machine Learning

Early research showed highest correlation between timbral features and genre
(Tzanetakis & Cook 2002)

Survey of State-of-the-Art: Best algorithms use MFCCs + spectral stats
(Sturm 2013)



Implemented Features: 
MFCC 

Windowed
Signal
(2048)

FFT
Mel 

Filterbank
(41)

log DCT



Linear Bins to Mel-Spaced Bins

f = 700(em/1127 −1)



Implemented Feature — MFCC

Pros:

Substantial dimensionality reduction (~10x - 100x)

Mel filterbank preserves perceptually relevant information



Implemented Feature — MFCC

Pros:
Decorrelates features,

approximates Principal Component Analysis projection



Implemented Feature — MFCC

Cons:

Lossy: reconstruction is very sketchy
without prior preservation of pitch and phase



Deep Neural Network: 
Feature Extractor + 

Classifier
Deep Networks converge on lower-dimensional projection that 

minimizes cost function

DNN can extract best features from raw spectrogram or
further reduce dimensions of large MFCC tile

Softmax on k outputs can do multi-class



McCulloch-Pitt Neuron Model

w1
w2
w3

wn

x3

x2

x1

xn

∑ 1
1+ e− x

weights

inputs

sum

b1

activation function

output

0.1

0.2

0.3

1.0

0.5

0.3

0.1

0.1

0.1 0.4

0.1

0.6 1.0
t

α

0.4

0.1

0.04
updateδ

(xij )

next output
0.61



Feed-Forward Training
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Back-propagation of Error
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Deep Neural Network

Pros:
Powerful: automatically extracts the best features for the task

Flexible: trivial to add increased depth and complexity to the model



Deep Neural Network

Cons:
“Black Box”: Parameters are inscrutable; 

‘reasoning’ can only be understood empirically

Doesn’t work “out-of-the-box”; search of hyper-parameters required

Too Powerful: without careful regularization,
prone to overfitting

Fully-connected layers confused by translation and scaling



Lost in Translation

=

=

=

Flat layers

can’t preserve

spatial context



Convolutional Layers

weights are shared 
between neurons 

locally connected 
input

each “slice” shares a different 
kernel of weights



Dataset
700+ soundtracks with IMDB genre tags

130,000 samples, 9.2 seconds each

40 MFCCs x 100 frames

13,000 samples for each of 10 classes:

Action, Adventure, Comedy, Crime, Drama, 
Fantasy, Musical, Romance, Sci-Fi , Thriller



Network Hyper-Parameters

Input Dimension 1 x 40 x 100

Convolutional Layer 32 filters
5 x 5

Max Pool Layer 2 x 2

Dropout 0.1

Convolutional Layer 64 filters
3 x 3

Max Pool Layer 2 x 2

Dropout 0.2

Convolutional Layer 128 filters
2 x 2

Max Pool Layer 2 x 2

Dropout 0.3

Convolutional Layer 256 filters
2 x 2

Max Pool Layer 2 x 2

Dropout 0.4

Dense Layer 50

Dropout 0.5

Dense Layer 50

Output Layer 10
(softmax)

Validation Size 0.2

Learning Rate 0.01 (linear decay)

Training Epochs 655



F1 Scores by Class for Fully-Connected and 
Convolutional Models:

Class Fully-Connected 
Model

Convolutional 
Model Change

Sci-Fi 0.008 0.220 +0.212
Romance 0.027 0.176 +0.149
Musical 0.356 0.483 +0.127
Thriller 0.042 0.137 +0.095
Crime 0.193 0.202 +0.09
Fantasy 0.113 0.202 +0.089
Drama 0.014 0.101 +0.085

Comedy 0.022 0.165 +.143
Action 0.233 0.219 -0.014

Adventure 0.204 0.196 -0.08



Shortfalls:
Even the best class (Musical) is still far short of perfect

Softmax output only assigns a single label; not a good representation
of the actual data



Bagged Ensemble

Replace single multi-class network with 10 binary classifiers

Train each on full ‘positive’ subset 
and a random sampling of ‘negative’ subset

Logistic output delivers value between 0.0 and 1.0

Rank predictions



Multi-Label Metrics:

Coverage Error: Average number of predicted labels needed to recall all 
ground-truth labels

Label Rank Average Precision: Average ratio of relevant labels predicted/total 
labels predicted

Coverage Error: 5.52
Best possible CE: 2.33

LRAP: 0.59 out of 1.00



Average predictions  
over full track

Coverage Error: 5.02
Best possible CE: 2.33

LRAP: 0.61 out of 1.00



F1 Scores by Class for Single Model and 
Ensemble (Bagged and Averaged):

Class Single Ensemble Change

Drama 0.10 0.55 +0.45
Comedy 0.17 0.61 +0.44

Adventure 0.20 0.54 +0.34
Thriller 0.14 0.48 +0.34
Action 0.22 0.55 +0.32

Romance 0.18 0.44 +0.26
Sci-Fi 0.22 0.46 +0.24

Fantasy 0.20 0.38 +0.18
Crime 0.20 0.37 +0.17
Musical 0.48 0.61 +0.13



Q: Is accuracy necessary/sufficient?
 “Good enough” can be more productive for discovery than “perfect”. 

(Lopresti 2001) (Kaminskas and Ricci 2012)

Even a highly accurate classifier may not necessarily be modeling the intended pattern.
(Sturm 2013)

Q: Where did the mis-labelings come from?

Poorly labeled ground-truth
Overdetermination of classes

Model weakness



Q: Are some ‘mis-labelings’ actually better 
than the ‘accurate’ labels?

Comedy, Crime, 
Drama

Action, Sci-Fi, 
Adventure

Track Predictions Targets

Sneakers:
The Hand-Off

The Truman Show:
Powaqqatsi — 

Anthem

Action, Sci-Fi,
Thriller

Comedy, Sci-Fi

Jaws:
One Barrel Chase

Comedy, Romance, 
Fantasy

Drama, Thriller

O Brother, Where 
Art Thou?:

Down in the River

Drama, Fantasy,
Crime

Crime



Conclusions
Film score genres can be modeled successfully 

without establishing high-level features like music genre, harmony, melody

Overlap between film genre and film score genre is 
significant enough to be useful

Ensemble of convolutional models is clear winner out of algorithms evaluated



Future Research
Raw spectrograms: preserve pitch and phase information, make it possible to

‘hear’ the filters and parse the reasoning of the network

Better labeling on the dataset: more accurate and fine-grained labels, labels at 
the track level, multiple labels for training

Recurrent Network: RNN can preserve feature interaction over time, whereas 
CNN merely recognizes presence of complex features



Thanks!



Preventing Overfitting with Dropout

Neurons tend to split up the work and “co-adapt”,
converging on a low-cost solution that generalizes poorly

Random dropout forces individual neurons 
to be more ‘descriptive’



Preventing Overfitting with Validation and Early Stopping

Validation set is held out from training and test set

Stop training after validation error increases for given number of 
epochs, set parameters to best model

Validation Loss
Training Loss

stop here use these
parameters



Exhaustive Search

Evaluate all combinations of a pre-set dictionary of hyper-parameters,
e.g.,

{‘learning_rate’: (0.1,0.01,0.001),
’n_hidden’: (50,100,200),

‘batch_size’: (200,400,800)}

Combinatorial, random search sampled from a range can be better


