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Abstract

Search cost for music has fallen dramatically in recent years while commercial, television, 

and film ‘syncs’ have grown in importance as a revenue stream and marketing channel for 

recording artists. Toward providing a practical recommendation agent to better connect 

recording artists and music supervisors, the author proposes a bagged ensemble of deep 

convolutional networks for automatic classification of music by appropriate film genres. The 

ensemble was trained on more than 100 hours of labeled film underscoring and soundtracks 

and can accurately tag audio with multiple film genre labels ranked by confidence, as well as 

provide novel classifications that exceed the limitations of the given labels.
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A Bagged Ensemble of Convolutional Deep Networks for Film Score Genre Labeling

Introduction 

Music is a powerful tool for strengthening the emotional connection between the 

viewer and a moving image (Eckhardt and Bradshaw 2014). Neurological research shows that 

listeners react to changes in background music before anything else; for evolutionary 

reasons, the brain prioritizes auditory streams and the emotional reactions thereto, even if 

the listener is not consciously aware of it {(Näätänen and Winkler 1999) cited in (Fraser and 

Bradford 2013)}.

While this deep relationship between music and story has persisted for centuries, the 

circumstances of that relationship have changed dramatically. In the 21st century, digital 

technology has generated skyrocketing growth in the sheer quantity of media, as well as 

changing how we get it (Seabrook 2014). The increase in video content on cable and online 

combined with unprecedented access to licensing has led to the increasing popularity of 

synchronization (“sync”) as a method for combining music and image. Sync, in contrast to 

under-scoring, is done by selecting a pre-recorded musical cue that fits the content and style 

of the image, frequently a pop song with vocals (Anderson 2013).

The recent prominence of sync over commissioned work has changed the workflow 

of scoring a project. The practice has gradually shifted from a matter of creating original 

compositions to a matter of selecting existing recordings that fit with the emotional and 

stylistic content of the image. In addition, the amount of music available for licensing has 

increased by many orders of magnitude, as sync gains a more important role as a marketing 
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channel for emerging artists and a revenue stream for established artists. Year upon year, the 

pool of potential candidates for any given project grows. 

As in many other domains of increased access and reduced search cost, “choice 

overload” leads to a heuristic decision process, at a cost to music supervisors, directors and 

emerging artists.  This paper proposes a path to a content-based recommender system that 

will give music supervisors more efficient access to meaningful content, by modeling the 

relationship between cues and film genres. Drawing on new research in machine learning, 

music information retrieval, the perception musical emotion and style, as well as a dataset of 

labeled film score recordings, I will investigate the connection between raw recordings and 

film genre.

The first part of this paper covers the historical role of pop song synchronization in 

film, television, and TV commercials, tracing its fall during the height of rock ‘n’ roll, its re-

emergence in past two decades, and its current creative and economic role. The next section 

covers the challenges inherent to aligning musical and visual meaning, metaphorical vs. 

technical descriptions of music, and the impact of “information overload” on the sync 

process. The third section explores the general solution of recommender systems and 

identifies what low-level features can be drawn from the audio signal that will correlate well 

with style and emotion, as well as review the MIR literature of genre and emotion 

estimation. Finally, the author proposes a multi-label tagging system based on an ensemble 

of deep convolutional neural networks.
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Literature Review 

History of Sync 

Early Sync to the Rise of Commercial Antagonisms 

During the first “Golden Age” of talkies, Hollywood, Broadway and record labels 

worked hand-in-glove. Features drove record sales and hit songs sent audiences to the box 

office (.Galdston, Carlin et al. 2013). Big-budget musicals were syncs writ large, entire films 

supported by pre-existing Broadway hits. The primacy of movie musicals lasted from the 

dawn of the talkie until well into the age of television. (Kessler 2013) A quick sampling of the 

Billboard archives reveals that, in the 1940s, 27 out of 94 #1 singles were featured in movies 

(29%). In the ‘70s, only 16  in 253 came from movie soundtracks (6%).1

Exactly what happened in pop culture between 1950 and 1970 is the subject of 

reams of scholarship. Suffice to say it was a turbulent period technologically, socially and 

politically. By the end of the 1950s, the concept of “selling out” had taken hold in popular 

culture. Rock ‘n’ roll, which now formed the core of the pop record industry, set itself in an 

antagonistic pose to establishment media, and to TV advertisement especially. Rock 

musicians cherished and protected their authenticity and outsider status, often going out of 

their way to distance themselves from commercial culture. In one memorable episode from 

1967, Jim Morrison threatened to destroy a Buick with a sledgehammer if one of the Doors’ 

songs was used in TV ad (Eckhardt and Bradshaw 2014).



DEEP NETS FOR FILM SCORE CLASSIFICATION �8

Rock musicians were also wary of association with mainstream film and television. 

The most visible marriages of rock music and film from the period were “rock 

musicals” (Rocky Horror Picture Show, Grease, Hair).  Leaning more toward the “rock” side 

than the “musical” side, The Who released two classic films (Tommy, Quadrophenia), but these 

were adaptations of complete original works by the band, not syncs. The Who themselves 

were especially critical of advertising, titling their third album The Who Se# Out and filling 

the record with cutting parodies of ad culture (Eckhardt and Bradshaw 2014).

Today, however, the surviving members of The Who provide a curious 

contrast to the ironical and skeptical attitudes of their younger selves. In 2014, guitarist Pete 

Townsend approved the re-release of 15 of The Who’s classic tracks, re-mixed expressly for 

the purpose of licensing (Adegoke 2014). It appears that the pendulum has swung back, but 

why?

The Re-Emergence of Sync In Film and TV 

Many authors trace the rise of sync to the catastrophic erosion of record sales 

since 1999 ( Seabrook 2014)( Adegoke 2014). According to the RIAA, record sales generated 

$20.4 billion (2012 dollars) in 1999. By 2013, revenues were down to $7 billion. (Lunny Jr 

2014) The recording industry has consistently blamed these losses on the migration of 

listeners away from physical album purchases, driven by the proliferation of digital 

technology. It’s logical that a quest to recoup lost revenue would lead to increased licensing. 

However, sync was on the upswing long before the turn of the millennium.
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The mid-1980s marked the turning point for sync in films, TV, and commercials. 

Record companies looked to their back-catalog as a source of untapped revenue. Films 

began employ pop-music montages to such an extent that it became a hallmark of the 

decade’s blockbusters: (Footloose [1984], Rocky IV [1985], Top Gun [1986]). And the press took 

notice of the influx of hit songs: Variety described Flashdance as “pretty much like looking at 

MTV for 96 minutes” (Calavita 2007).

MTV, which was just getting legs in 1983, supercharged the elements of musical 

montage and exposed the wider public to new ways of juxtaposing music and images. It’s 

become somewhat of a cliché to note how comprehensive MTV’s influence on sound and 

images has been (Calavita 2007). By the late ‘90s, a large proportion of major film releases 

were scored with syncs, especially films aimed at a younger audience (Reality Bites [1994], 

Clueless [1995], Empire Records [1995], Spice World [1997], Godzi#a [1998]). Teen TV dramas like 

My So-Ca#ed Life, Beverly Hi#s 90210, Melrose Place, Party of Five, Buffy the Vampire Slayer, 

Felicity, Dawson’s Creek and The O.C. were liberally seasoned with contemporary hits, paving 

the way for the use of sync in later shows aimed a slightly older audiences like Grey’s Anatomy 

and House (Wakefield 2009).

The Internet and New Marketing Channels 

By the turn of the millennium, sync was commonplace in mainstream film and 

television. TV commercials, however, remained a relatively limited market for cutting-edge 

pop. Some of the biggest pop stars in the world were allied with major ad campaigns 

(Michael Jackson and Pepsi, for example), but rock musicians generally still viewed 
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advertisers with suspicion and disdain. Advertisers continually returned to the labels’ back-

catalog of classic soul and “oldies”, but commercials were not seen as a place to “break” new 

acts (Anderson 2013).

The seeds for the change in commercial sync were sown in 1996, when the 104th 

Congress passed the Telecommunications Act, a dramatic deregulation of cable TV, 

telephone, Internet, and radio. It was the most comprehensive federal telecom legislation 

since 1934, the year the Federal Communications Commission was created. Among a raft of 

amendments to the law, limits on the number of radio stations in common ownership were 

lifted completely (Cummings 2007). This in turn led to a cycle of mergers, buyouts, and 

consolidation throughout the broadcast industry. In a short time, the majority of radio 

stations were owned by a handful of massive media conglomerates. This centralization 

demonstrably reduced the diversity of radio playlists. Taking place just as online, satellite, 

and cable outlets were multiplying, radio consolidation encouraged musicians and record 

companies to look elsewhere for effective exposure. Song “plugging”, a direct-selling 

practice dating pack to broad-sheet ballads and Tin Pan Alley, made a comeback as artists 

and managers jockeyed for exposure (Anderson 2013).

A major turning point came in 1999, when Volkswagen ran an ad for the Cabriolet 

titled “Milky Way”, scored by Nick Drake’s “Pink Moon”, from the 1972 album of the same 

name. When Drake died of an apparent suicide in 1975, Pink Moon had barely sold 5,000 

copies. After “Milky Way” ran, he experienced a posthumous critical and commercial 

renaissance (Chadwick 2000). That same year, Moby’s Play, which had experienced 

lackluster sales, exploded after being licensed in more than 300 advertisements. Well-placed 

syncs were a win-win for labels and agencies: mass-market exposure juiced the sales figures 
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of previously unknown artists, and a measure of underground credibility rubbed off on the 

advertising client (Eckhardt and Bradshaw 2014).

Sync Today 

Current total global revenue for the recording industry is approximately $15.1 billion 

(USD).  The majority of this revenue continues to come from physical album sales, but a 

significant fraction is split between direct downloads and revenue from subscription and ad-

supported streaming services. Revenues from synchronization deals can seem like a drop in 

the bucket in comparison: 2.1% of total global sales, totaling roughly $317 million (Seabrook 

2014). This is partly because many sync deals are driven by cost-conscious clients and 

producers. “Lacey”, a recording exec interviewed anonymously by Eckhardt and Bradshaw, 

says: “Companies are looking for two things when they choose a song for their ad—they 

want to tap into some sort of cool cache and they also don’t want to spend a ton of money. 

Indie labels charge significantly less than the majors, and their product is inherently ‘cooler’” 

(Eckhardt and Bradshaw 2014).

However, a significant measure of the value of sync deals comes from the exposure 

generated for the artists. Up-and-coming artists look at sync deals as an essential part of 

promotion. “Lacey” again: “Initially licensing was more of a ‘gravy’ thing, but as print outlets 

have decreased and radio play has remained as difficult as ever, licensing has become more 

important to the marketing of a record.” Sync is not only a revenue generator for the label 

and the artist, but an important “marketing channel”. (Eckhardt and Bradshaw 2014) In this 

respect, sync bears similarity to product placement (Galdston, Carlin et al. 2013). Therefore, 
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the ultimate goal of the label and the artist is not necessarily to garner earnings from the 

sync itself, but to inspire a song purchase. It’s difficult to say how many purchases are caused 

by sync exposure, but the examples of Pink Moon and Play demonstrate that the true value 

of sync far outstrips 2.1% of global revenue.

Soundtrack for a Brand: Challenges in Synchronization 

Although synchronization is clearly an effective and lucrative practice for musicians 

and clients, it doesn’t come without challenges. Many of the aesthetic complications 

inherent to work for hire scoring apply equally to sync. In addition, there are significant 

workflow issues that come from picking pre-existing music from a large library.

Dancing About Architecture 

Whether the music for a project is synchronization or an original score, the ultimate 

decision-maker is often an executive without professional musical training. (Anderson 2013) 

Music supervisors occupy the touchy role of translating the dramatic needs of executives 

into appropriate musical selections. In his autobiography No More Minor Chords, 

composer and conductor André Previn recounted an episode involving MGM boss Irving 

Thalberg, which illustrates how a non-musician, in an effort to verbalize some musical 

impression, can misstep with disastrous results. One day Thalberg heard some music from a 

score that he hated, and he said as much. Someone, no doubt trying to be helpful, said, 

“Well, that’s a minor chord”. The very next day a memo was circulated through the studio 

that said “No more minor chords in movie overtures” (Galdston 2013).
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This story quite rightly reveals Thalberg as an absurd despot, but at the same 

time also reveals some very important limitations of music theory.  Abstract, technical 

language is a useful tool in the right hands: a relatively compact and efficient way of 

communicating musical ideas between trained practitioners. However, it doesn’t capture the 

complete picture. 

The very nature of scoring and synchronization relies on the associative and 

suggestive powers of music, which arise from the timbre and affect of the piece and are best 

described with metaphorical language.  Even the simplest musical terminology, e.g. “high/

low” or “light/dark”, is merely “frozen” metaphor to which we have become acculturated 

(Schroeder 2013). Laypersons are often surprisingly good at summing up the affective 

connotations of a track with complex poetic or visual language, e.g. “The sound of the open 

road,” and describing different instrument timbres as different characters, e.g. “high-heeled 

sax” (Galdston, Carlin et al. 2013). The ultimate role of the music supervisor is to take the 

metaphors, references and I-know-it-when-I-hear-its of the director and translate them into 

a tangible sound (Anderson 2013).
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Information Overload: The Paradox of Choice and the Limits of Attention 

“As long as the centuries continue to unfold, the number of books will grow 

continually, and one can predict that a time will come when it will be almost as difficult to 

learn anything from books as from the direct study of the whole universe.”

—Denis Diderot, Encyclopédie (1755) (Diderot 1978)

"We get a lot of submissions; at this point I think about 9 million people have the 

address and phone number of my company.”

—Alexandra Patsavas, Music Supervisor: Grey’s Anatomy, The O.C. (Wakefield 2009)

Each minute of the day, roughly 12 hours of music are uploaded to the music-

streaming service Soundcloud (Dillet 2014). Spotify, an ad- and subscription-based service 

that streams the catalogs of major labels and indie artists, boasts 20 million unique tracks. It 

adds 20 thousand new tracks every day (Seabrook 2014). There are simply not enough years 

in a lifetime, let alone hours in a day, for a music supervisor or director to give a fair hearing 

to every possible track. As sync has become an important marketing channel for artists, 

supervisors are continually inundated with spec tracks. 

What is the effect of this fire-hose of haphazardly sorted media? One of the 

benchmark principles of cognitive science, Hick’s Law, states that, in simple tasks, the 

number of alternative choices increases decision time log-linearly (Lidwell, Holden et al. 
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2003). In general, increased choice and increased information increase deliberation time 

because of the brain’s physiological limits on information processing. Given limited time, 

people will change their decision-making processes, affecting the quality of their decisions, a 

phenomenon known as “information overload” or “choice overload”. “Faced with elevated 

levels of information load, […] an individual’s limited capacity to process information 

becomes overloaded, which results in undesirable consequences such as cognitive fatigue 

and confusion” (Eppler and Mengis 2004), cited in (Aljukhadar 2012).

Thus, pressed for time, music supervisors must inevitably make compromises when 

evaluating suitable tracks, relying on social or business considerations to make final 

decisions, rather than waiting for the perfect track to jump out of the haystack (Wakefield 

2009). Artists and clients both lose, because the best fitting track can’t be heard through the 

noise. So the question stands: how can the noise be reduced so the optimal sync becomes 

more likely?

Recommender Agents 

Online retailers were among the first to come to grips with choice overload in 

the age of the Internet and cheap searches. Retailers that facilitate efficient shopping (i.e. 

matching up shoppers with what they want) encourage loyalty and gain a competitive edge. 

To that end, online retailers provide customers with “decision support systems” in the form 

of “recommendation agents”, whose personalized recommendations alleviate cognitive load 

and maintain acceptable choice accuracy (Aljukhadar 2012).  
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From its genesis in the early 90s, recommender systems have expanded to many 

services beyond retail, including social networks, investment advice, dating, media 

streaming, and web search (Burke, Felfernig et al. 2011). Good recommendations can be the 

difference between a successful service and a failure, and effective recommendation 

algorithms are worth big money. 

In 2007, Netflix famously put up $1 million for whoever could reduce 

recommendation errors by 10%. In order to do so, they had to release a massive amount of 

anonymous user data, as well as their proprietary algorithm, taking the gamble that an 

improved algorithm was worth the loss of trade secrets (Villarroel, Taylor et al. 2013), Early 

in 2014, Spotify purchased Boston-based Echonest for $100 million to gain control over its 

powerful “Truffle Pig” algorithm, which can extract more than 50 musical parameters from a 

track automatically (Lunden 2014). The CEO of Spotify, Paul Ek, is betting that his 

company’s ability to analyze data and generate individualized playlists will give it an edge 

over emerging competition from Google and Apple (Seabrook 2014). 

The foundation of a prototypical recommender system is filtering, either 

“collaborative” or “content-based” (Burke, Felfernig et al. 2011)(Kaminskas and Ricci 2012). 

Collaborative filtering, the most common method, works from the assumption that users 

with similar use habits, purchases, or ratings, are likely to continue to do so in the future.

An extremely transparent and simplified example of this practice can be seen in 

Amazon’s “What Other Items Do Customers Buy After Viewing This Item?” feature. This is 

simply a ranked list of the purchases of other users who are close to the customer on the 

one-dimensional line of “did/did not view this item”. The hope is that information about 

similar customers will be of some utility; Amazon collects other, finer-grained data, and 
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encourages customers to rate items and thus create a more detailed and useful profile (2015). 

Last.fm, a music streaming service, uses a similar system, gathering implicit data (e.g. play 

time) and explicit data (e.g. song ratings) to generate a user taste profile (Haupt 2009)

(Kaminskas and Ricci 2012). 

Collaborative filtering is very useful only as long as there is enough user data, and it 

can be hindered by data sparsity, “cold starts”, and popularity bias. The rating predictions 

are heavily weighted toward items that have already been frequently rated, and new or novel 

selections don’t rise to the surface (Kaminskas and Ricci 2012).

Content-based filtering, on the other hand, suggests items that share content tags 

with items already rated highly by the user. Pandora is the most visible example of content-

based filtering, relying on a relatively small library with very detailed and robust content tags 

(Burke, Felfernig et al. 2011). While Pandora makes excellent predictions about listener 

taste, there is a big trade-off in a content-based system that comes from the cost of 

acquiring accurately tagged data. Pandora relies on human experts to rate tracks on a long 

list of musical features, which is time-consuming, expensive, inflexible and non-scaling. 

These factors ultimately limit the size of the music library that Pandora can effectively 

manage (Kaminskas and Ricci 2012). One of the overarching goals of automated music 

classification is to dramatically reduce the cost of tagging massive data.  
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What makes a “good fit”?: Recommender Systems for Music Supervisors 

No matter what your personal view is on minor chords, it isn’t difficult to hear when 

a piece of music is “working” with an image or not. However, it can be exceedingly tricky to 

pin down why one piece of music works and another, possibly very similar track, does not. 

“Music fit” has been defined as “the consumer’s subjective perception of the music’s 

relevance or appropriateness to the central ad message” (MacInnis and Park 1991). In this 

case, the measurement of “fit” is derived from surveys about different musical selections. It 

draws a correlation between good “fit” and favorable listener response, but doesn’t presume 

to indicate where exactly in the physical structure of a sound “fit” inheres, or give guidelines 

on how to find the best fitting track given an image and a message. MIR algorithms cannot 

“see” fitness directly, only patterns present in the signal. Much like the terminology gap 

between metaphor and music theory described earlier, “users are not able to define their 

needs in terms of low-level audio parameters (e.g., spectral shape features)” (Kaminskas and 

Ricci 2012).

(Oakes 2007) gives a good overview of the literature on “fit” in advertising 

background music, which he terms “congruity”. Congruity is broken down into categories, 

including mood, valence, tempo, timbre, and genre. In general, higher congruity ratings in 

these categories correspond with increasingly favorable listener responses to the 

advertisements. If congruity is the ultimate goal of image/sound matching, these categories 

provide some important points of connection that will lead to a workable “reverse-

engineering” of congruity/fitness.
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Genre Perception 

On the list of congruity categories provided in (Oakes 2007), timbre and tempo are 

the “lowest-level” features; measures that can be extracted from audio with minimal 

processing. Tempo has a clear definition: the rate of “beats” in time. (Percival 2014) In 

practice, this is usually identified as the rate of the predominant low-frequency periodicity 

present in a signal. It can be extracted by a number of methods, including auto-correlation 

(Percival and Tzanetakis 2014) (Grosche and Müller 2011), oscillating filters (Zhou, 

Mattavelli et al. 2008), or probabilistic methods (Ellis 2007). 

Timbre is harder to pin down; it is defined by ANSI (1973) as the property of a sound 

that distinguishes it from another when duration, loudness and pitch are held constant. It is 

generally understood to include the spectral content of a sound at any given moment. 

However, perception of timbre is also contingent on how the spectral content changes over 

time, that is, the envelope of the sound (Houtsma 1997).

There is ample evidence that source identification is primarily driven by timbre cues, 

independent of pitch and loudness. In his groundbreaking work, (Gray 1942) determined 

that subjects could recognize phonemes with as little as 3 ms of exposure. At times, the 

duration was significantly shorter than the time necessary for a single cycle of the 

fundamental frequency. At 3 ms, no pitch information below 333 Hz can be retrieved, and 

the duration falls well below the temporal masking threshold of 20 – 200 ms (Pohlmann 

2010). Testing for discrimination between sound groups, e.g. voices and instruments, (Suied, 

Agus et al. 2014) found performance exceeded chance at 4 ms, with some vowel sounds 
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recognizable at 2 ms. While there was a robust voice advantage throughout the study, no 

advantage was observed for higher pitched sounds, suggesting that sound recognition is 

independent of pitch perception, and supporting the hypothesis that the foundation of 

sound evaluation lies in timbre features. (Patil, Pressnitzer et al. 2012) observed physiological 

evidence for this hypothesis, in the form of cortical responses to the same sound set. 

Patterns of excitation in the cortex of mammalian test subjects could be used to distinguish 

between sounds by using a standard machine learning classifier i.e. Support Vector 

Machines.

Further studies using short clips of complete, multi-instrument musical tracks have 

indicated the primacy of timbre and tempo for perceiving high-level features like genre and 

perceived emotion. Subjects can estimate the emotional content, musical style and decade 

of release of previously unheard recordings significantly better than chance, after exposure 

of only 400 ms (Krumhansl 2010). Even subjects with amusia, who are unable to identify any 

song by name, performed equally well on judgments of style and emotion. While this 

duration is longer than the impossibly thin slices sufficient for source identification, “if 

genre identification, as a contextualizing categorization, required the prior classifications of 

component features like melody, bass, harmony, and rhythm, then it is unlikely that such 

rapid identification would have been possible. That is, from a single tone one could not infer 

any reliable information about melody or rhythm. Rather, it seems highly probable that the 

rapid recognition of musical genre occurs concomitantly with the decoding of component 

features (Gjerdingen and Perrott 2008).

Therefore, there is ample perceptual justification for relying on the timbre of an 

audio signal as a proxy for the genre (however that may be defined) and emotional content 
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of a piece of music. This is further supported by MIR research, discussed below, indicating 

that spectral content over a relatively long window is a good predictor of genre (Burred, 

Röbel et al. 2006).

Automatic Genre Recognition 

Feature Extraction

The system proposed here is, at its core, a genre recognition system (MGR). 

Classification tasks form a sizable chunk of MIR research, dating back to research on 

phoneme classification in the 1960s, and music genre recognition is the “most widely 

studied area” (Fu, Lu et al. 2011)cited in (Sturm 2013). Great strides in the field have been 

made since the problem of automated genre tagging was first tackled in the early aughts, 

(Tzanetakis and Cook 2002), and classification accuracy on benchmark datasets has crept up 

persistently. While the particulars of MGR systems can vary widely, nearly all research has 

followed a standard model: a feature extraction stage followed by a classification stage. 

During feature extraction, audio files are decomposed into smaller temporal chunks, 

transformed into the spectral domain through FFT, and then taken through further 

processing to extract relevant features. There is a sliding scale of feature engineering, 

ranging from unprocessed spectrograms to pseudo symbolic representations of rhythm, 

harmony, and pitch. Generally, “higher-level” features incorporate more rounds of signal 

processing and take up less memory. For example, raw spectrograms take up half the space 

of unprocessed PCM audio. MFCCs, depending on the number of coefficients retained, can 
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be smaller by a factor of ten. Chroma-grams, tempo-grams, and other beat synchronous 

features are smaller still. 

The primary advantage of more elaborate feature extraction and pre-processing 

schemes comes from projecting the audio data, which is rather high-dimensional, to a lower-

dimensional subspace. Most classification algorithms perform poorly on high-dimensional 

datasets when the size of the feature vector exceeds the numbers of examples in the class, 

the so-called “curse of dimensionality” (Bishop 2006). The lower the dimensionality of the 

features, the more feasible small datasets are, and the classification algorithm will converge 

more quickly on a simple model. In addition, engineered features can filter out extraneous 

noise and provide a stronger training signal to the classification algorithm. Of course, there 

is no such thing as a free lunch, and more intensively engineered features are more alienated 

from the original audio samples, and by necessity discard information that may very well be 

useful to classification (Dieleman and Schrauwen 2014) (Humphrey, Bello et al. 2012). The 

best engineered features strike a balance between over-simplifying the data and drowning it 

in noise (Grzywczak and Gwardys 2014). In a survey of the literature since 2002, low-level 

timbre features rise to the top as the most successfully employed hand-crafted features.

(Tzanetakis and Cook 2002), in one of the founding experiments of MGR, used an 

ensemble of low-level and high-level features, combining MFCCs with simple timbre 

(spectral centroid, spectral flux, etc.) and tempo (beat histogram) features. The best 

individual features were the variance of the spectral centroid and the mean of the first 

MFCC over the analysis window. In addition, although they supported classification better 

than random chance, “the nontimbral texture features, pitch histogram features (PHF), and 
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beat histogram features (BHF) perform worse than the timbral-texture features (STFT, 

MFCC) in all cases.” 

This initial observation has persisted to the present day; in the three state-of-the-art 

genre recognition systems identified and evaluated in (Sturm 2013), all three used MFCCs 

and some other timbral measures (i.e. centroid, spread, or rolloff). Because accurate 

automatic transcription is still an unresolved problem in MIR, and inaccurate transcription 

can severely impair classification, implementation of high-level pitch features is relatively 

rare.  (Anglade, Benetos et al. 2010) proposed an ingenious system for generating 

prototypical harmonic rules and combining chord transcription with low level features. 

However, the harmonic rules were derived from a large corpus of pre-existing symbolic data, 

and inclusion of harmonic features in the classifier did not result in persuasive improvement 

over timbral features. The addition of harmonic features improved classification accuracy by 

1.66%; the addition of total loudness as a feature improved accuracy by .66%. For a very 

slim improvement compared to an extremely simple feature like loudness, not to mention 

the requirement of a symbolic corpus, transcription appears to remain an inappropriate 

approach for classification from audio. 

Although pitch transcription can’t compete with low-level timbral features, the use 

of tempo-grams or extracted rhythm templates in concert with timbral features can add up 

to significant improvements (Tsunoo, Tzanetakis et al. 2009) (Schindler and Rauber 2014). 

Rhythm features are much more robust than automatic pitch or harmony transcription. 

Further, in many musical subsets the major distinguishing feature between genres is the 

presence of certain rhythmic clichés (Wright, Schloss et al. 2008). While the use of 
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rhythmic features is promising, the implementation described here will only use timbre 

features.

In summation, timbre features have proven to be the most robust and practical 

features for automated genre recognition. In addition, there is significant support from 

psychoacoustic research that timbre in the predominant perceptual component in human 

genre recognition.

Classification Methods

Once the audio has been projected into a suitably low-dimensional and descriptive 

feature space, the data is ready to be classified. In the broadest terms, a classification 

algorithm will attempt to iteratively construct a function that partitions the high-

dimensional feature space into class-matching subspaces (Tzanetakis and Cook 2000). In 

practical terms, the architecture of particular algorithms can vary widely.

Classification models fall under the two main branches in machine learning: 

supervised and unsupervised learning. Unsupervised learning, also referred to as “clustering”, 

groups like-to-like feature vectors without any reinforcement from ground-truth labels. 

Rather, it seeks to describe the data by a set number of parameters, e.g. K-means or 

Expectation Maximization (Berenzweig, Logan et al. 2004). Clustering is useful for 

collaborative recommendation agents because it generates a similarity metric for the 

samples. Classes can be labeled after clustering by hand or by a measurement of their 

members. 
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Supervised learning, on the other hand, makes predictions and compares them to 

ground-truth labels, using that error signal to optimize a cost function. Supervised learning 

models, primarily decision trees (Foote 1997) and Support Vector Machines (Tzanetakis and 

Cook 2002), set the benchmark for MGR from the late 90s until the 2010’s. Accuracy could 

be dramatically increased with ensembles of classifiers, e.g.  random forests of decision 

trees, “bagging” (weighted parallel classifiers), or “boosting” (iteratively trained classifiers). A 

standard model for genre classification began to take shape: extract timbral features and 

classify them with an ensemble of SVMs.

By 2012, the MIR community had converged on such a model across a wide array of 

problems, including transcription and beat detection. This was for good reason: new 

features and schemes of classification were tested but could not reliably best the standard 

timbre/SVM model. Benchmark improvement had begun to slow dramatically, and was 

usually achieved by scaling up existing methods. MIR had reached a state of rapidly 

diminishing returns (Humphrey, Bello et al. 2012).

Deep Learning

In the past few years, research has begun to shift away from “hand-crafted” features, 

toward the use of deep neural networks (DNN) to extract relevant features automatically. 

DNNs can quickly converge on the optimal features for a given task, whereas hand-crafted 

features, whatever their sophistication, are ad hoc transformations that are evaluated and 

updated piecemeal. As (Humphrey, Bello et al. 2012) point out, many machine learning 

problems have converged toward a standard model of hierarchical transformations that is 
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mirrored in the layered architecture of a DNN. Since 2010, features extracted by DNNs 

have broken records in countless machine learning tasks, from handwriting recognition to 

image tagging. MGR is no exception (Hamel and Eck 2010). 

Deep neural networks are actually quite an old algorithm. The most famous, maybe 

infamous, early implementation was developed by Frank Rosenblatt at the Cornell 

Aeronautical Laboratory in 1957: the Perceptron. The early achievements of the Perceptron 

led to overheated hype of AI in the press; later research, notably Minsky and Papert’s 1969 

Perceptrons, burst the AI bubble and ushered in the first “AI winter”. Minsky and Papert 

had pointed out that a single layer Perceptron can only converge on linear functions. Simple 

boolean functions like XOR can never be learned by a single layer Perceptron. Although 

additional layers make a neural network more than capable of modeling non-linear functions 

(and Minsky and Papert said as much), Perceptrons is nevertheless widely cited as a direct 

cause of decreased funding for neural network research during the 1970s (Marsland 2014). In 

the past 20 years, however, advances in network architecture (deeper networks and 

convolution), regularization (norm penalties, dropout, validation and early stopping), and 

optimization (SGD with momentum) have put neural networks back at the fore of 

automatic pattern recognition.

The simplest case of a neural network is a single “neuron”. The neurons in neural 

networks are loosely based on the simplified biological model of McCullough and Pitt 

described in 1943: a vector of weights w multiplied by inputs x, plus a threshold (an 

additional weight b with a static input of 1) and an activation function (Figure 1). 
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Figure 1. Artificial Neuron Architecture

The network is “trained” by updating the weight vector after running each training 

example: for each weight, the difference between the intended output and the generated 

output is scaled by the learning rate, and added to the weight. In the single-layer 

“Perceptron” case, the updating algorithm is obviously trivial. In order to deepen the 

network and allow for convergence on non-linear functions, the network must be updated 

by back-propagation of error. The weights of the inner, or “hidden” layers, can be updated by 

recursively differentiating the error of the cost function with respect to the output of each 

weight, moving backwards from the output to the input. The weight is then adjusted in the 

direction opposite the error gradient (again, scaled by the learning rate) (Marsland 2014). 
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Over the training epochs, the network output descends the error surface and settles 

on a loss minimum (gradient descent). Because back-propagation differentiates the output of 

each weight, the activation function for each neuron must be differentiable. Common 

differentiable activation functions are hyperbolic tangent, sigmoid (Figure 1), and rectified 

linear units or ReLU. ReLU is has become the standard for most networks because of its 

simple differentiation and ability to handle unscaled inputs (Dahl, Sainath et al. 2013). 

Gradient descent without modification can be extremely slow and get trapped in 

local minima, so the updates are usually done on batches of training samples rather than the 

entire training set (Stochastic Gradient Descent or SGD), and scaled by a momentum value 

derived from previous step sizes (Nesterov Accelerated Gradient Descent, ADAgrad, 

rmsprop, etc.).

Deep networks are much more expressive than single layer networks, but without 

careful controls they can overfit. An overfit network will converge on a complex model of 

the training set that does not generalize well to new samples.

Fig. 2

Overfitting on Exponential + Noise (Scikit-Learn.org 2014)
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In the figure above, we see the plot of an overfit estimator on a toy dataset generated 

by a simple polynomial + noise. The estimator has converged to a function that perfectly 

describes the training data; no point is left out. However, in doing so, it has allowed the 

noise signal to distort the model to a point far beyond any generalization. The complexity of 

neural networks often reaches a point of diminishing returns because a more complex model 

does not necessarily generalize better than a simple model. Overfitting can be postponed by 

directly adjusting updates and penalizing outliers (L1 and L2 norm regularization), and 

avoided altogether by periodically validating the model on a held-out dataset, and stopping 

training when performance on the validation set stops improving (Marsland 2014). 

Although the neurons in a given layer are not connected to each other directly, they 

can develop implicit connection called “co-adaptation”, in which a group of neurons divide 

up the description of a feature among themselves. The output of one neuron depends on the 

output of the other neurons in the layer. Co-adaptation is another source of overfitting, 

because it allows the network freedom to converge to a random “correct” solution, not the 

best generalizing solution. Dropout layers, simple randomized masks in between hidden 

layers, weaken the implicit connections of co-adapted neurons and force the neurons to be 

more individually descriptive. With dropout, the network essentially becomes an ensemble 

of smaller networks which are individually less susceptible to overfitting, while preserving 

the expressiveness of the overall model (Dahl, Sainath et al. 2013).

Although wide and deep networks with dropout and regularization take much longer 

to train than unregularized networks, optimizing a network on a Graphics Processing Unit 

(GPU) can take a fraction of the time needed on even the fastest CPUs. This is because, 

very much like the first Perceptron, GPUs can do high-dimensional linear algebra on 
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hardware. The calculations for weight updates are extremely similar to the calculations on 

pixel shaders that GPUs do in their day jobs. Deep learning libraries like Theano or Caffe 

can use the CUDA platform developed by NVIDIA to cut training times of deep networks 

by a factor of 50. Since the hyper-parameters of a DNN must be derived experimentally, 

training times on the scale of hours or days, rather than months, are crucial to their 

usefulness.
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Methodology 

Data Collection, Labeling, and Class Balancing 

The raw audio data was drawn from a comprehensive sampling of film soundtracks 

available at NYU’s Bobst Library. The individual tracks were labeled by cue title, film title, 

composer, year of release, and most importantly, genre of the associated film. The genre 

assignments were taken from IMDB.com, the Internet Movie Database, for the sake of 

consistency and simplicity. IMDB is edited in wiki fashion, and the genre labels can be 

taken as the general consensus of a knowledgable and dedicated user base. 

Each film in the online database is tagged with at least one of 22 genre tags. The 

majority of the films are tagged with more than one genre, and certain genre pairs had a 

high degree of overlap. If a track was tagged with more than one genre, it would occur once 

in each of those classes. Therefore, there is some repetition of sample data between the 

classes, but no sample recurs with the same tag. Table 1 shows the 10 most and least 

frequent genre bigrams.
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Table 1

Ranked Genre Bi-Grams

Surprisingly, some tag pairs that would be expected did not occur at all, such as 

“Animation+Musical” and “History+Romance”. Some of this can be explained by the very 

small sizes of the Animation and History classes. Although the tags appear on equal footing 

in the database, certain categories occur much more frequently. Furthermore, genres were 

not equally represented in the available soundtrack recordings. As the following breakdown 

of the total available tracks shows (Fig. 3), the “Drama” tag swamps all others, which matches 

the extensive overlap it shows in the bi-gram figure. While Drama and Comedy could be 

considered “super-genres”, the two classes have significant overlap. A more promising 

bifurcation of the data would be between films tagged with Drama and those without. 33% 

of the total collected tracks, and 40% of tracks from the top ten classes have a Drama tag. 

Most Frequent 

Class Bi-Grams

Least Frequent

Class Bi-Grams

935 : Drama+Romance 16 : Action+History

551 : Crime+Drama 16 : Adventure+History

544 : Comedy+Drama 16 : Horror+Romance

518 : Drama+Thriller 15 : Adventure+Horror

482 : Comedy+Musical 15: Crime+Fantasy

454 : Comedy+Romance 14 : Fantasy+Horror

406 : Adventure+Fantasy 13 : Fantasy+Western

379 : Action+Adventure 13 : Horror+Musical

370 : Musical+Romance 10 : Action+War

518 : Drama+Thriller 9 : Crime+Musical
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Figure 3. Genre Membership Ranked

The smallest five classes (Animation, Documentary, History, Horror, and Biography) 

were therefore discarded prior to feature extraction. Feature extraction was limited to 1000 

randomly sampled tracks from each class. Because of varying track lengths between classes, 

the sample classes were balanced a final time after feature extraction, resulting in an equal 

amount of feature vectors for each class. Family, War, and Western were also discarded, as 

balancing to those classes would necessitate discarding more than half the data. Class 

balancing is so important prior to training because a neural network, in seeking to minimize 

loss, may overfit to a model that simply assigns each sample to the most overrepresented 

class. The 10 classes remaining after balancing were Action, Adventure, Comedy, Drama, 

Fantasy, Musical, Sci-Fi, Romance and Thriller.
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Feature Extraction  

The .mp3 files for each track were converted into ~9.2 second long tiles of the first 40 

Mel-Frequency Cepstral Coefficients (MFCCs). While neural networks can be trained on 

raw spectrograms or even PCM, taking the first few dozen MFCCs allows compression by a 

factor of 10 or more, allowing faster training on a larger dataset with less dimensionality. In 

principal, MFCCs preserve the timbre of the signal while discarding information regarding 

pitch. As discussed above, timbre features are both perceptually important for human genre 

recognition and robust in machine genre classification.

Some version of the MFCC feature has been standard for nearly 50 years, because it 

is a relatively simple compression algorithm that preserves perceptually important 

information. By capturing the very low periodicities of the spectral envelope, the first few 

MFCCs represent the general shape of the entire spectrum extremely efficiently.  The use of 

the Mel-frequency filter bank ensures a spectral resolution that is not perceptually 

redundant. In addition, MFCCs work well for classification tasks because taking a DCT of 

the spectrum de-correlates the spectral coefficients, which are highly covariant, i.e. 

statistically redundant (Batlle, Nadeu et al. 1998). The cepstral transformation is, in fact, an 

approximation of Principal Component Analysis (Fig. 4). The first MFCC, the DC 

component, is usually discarded. The final samples each consist of a 1 x 40 x 100 array of 32-

bit floating point values.
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Figure  4. MFCC Signal Processing

_________________________________________________________________________________

 

Figure  5. Components of DCT (—), PCA (- - -), and LDA    

(Batlle, Nadeu et al. 1998)
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Test-Train Division and Final Inputs 

After class balancing, the final dataset contained a 13,000 x 40 x 100 array for each 

class, totaling 130,000 samples in all. The average number of tags per track was between 2 

and 3, so the total audio represented came to roughly 150 hours of unrepeated music. Out of 

the 130,000 samples, 7,534 were retained for testing, representing 196 tracks. None of the 

samples from any test sample’s parent track occurred in the training set. Because of the 

multi-class (rather than multi-label) nature of the dataset, most samples recurred in multiple 

classes, and it would be possible for a test sample to be identical to a training sample but 

carry a different label, unless the test data were held out on the sample-parent level. Finally, 

the data were preprocessed by scaling to zero mean and unit variance for each feature 

(Stanford 2015). Dimensionality reduction was attempted with PCA, retaining 99% of the 

variance with 3400 of 4000 features, but the best results were obtained with unreduced 

vectors.

Two-Layer Neural Network 

Hyper-Parameters and Results 

The first feature extraction/classification model was a two layer neural network, with 

ten output neurons and a softmax classification layer. Hyper-parameters (learning rate, layer 

size, early-stopping patience, and batch size) were evaluated by experimentation and grid 

search. Model strength was evaluated by validation loss (on a random validation set of 20%), 

and by weighted-average F1-score (a ratio of precision to recall that captures over- and 

under-estimations).
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The best model was surprisingly small and fast: 50 units in each hidden layer, trained 

in 49 epochs. Wider layers did not perform drastically worse, but trained more slowly and 

overfit more. Unsurprisingly for such a shallow network, it performed poorly on the test set, 

bottoming out at a validation loss of 2.163, with an F1 average, weighted by class 

representation, of 0.224 (see Appendix for complete list of hyper-parameters and F1-scores).

Discussion 

Classification of Musicals was far and away the best, with an F1-score of 0.355, and 

Sci-Fi the most challenging class at 0.007. Sci-Fi and Thriller both have significant overlap 

with Action and Adventure, and both subsets classify very poorly compared with the more 

general parent classes. However Drama, being such a broad class that overlaps with nearly 

every other, cannot be modeled effectively at all, with a score nearly as bad as Sci-Fi: 0.014.

The Musicals class is an interesting case; obviously there is some audio feature 

present in the Musicals class that is rarely in any other. Below is a figure ranking the classes 

by year of film release. The Musical class is more than a standard deviation away from the 

rest of the classes, which are clustered around 1990.
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Table 2

Ranked Mean and Std. Deviation of Classes

It’s possible that the network is picking up on some feature related to older 

recording techniques, such as attenuation in the low and high frequencies, tape saturation or 

limited dynamic range. In addition, tracks from Musicals are much less likely to be purely 

instrumental underscoring; that is, most of the Musical tracks are songs with voices. The 

strength of the predictions on the Musical class is probably a combination of the timbral 

features of mid-century recording techniques and the presence of voices in the track, two 

features which are common to the Musical samples and rare in the other classes.

Clearly, such a shallow network generates weak features for the softmax classifier, 

which, apart from one or two classes, does very poorly. Accuracy could be improved with 

additional fully connected layers, making a deeper network. A deepened network with two 

wider layers after in the input, gently stepping down the features, can do somewhat better 

on the validation set. A 1000 , 100 , 50 , 50 network achieved a validation loss of 2.13, but 

Class Mean Year Standard Deviation

Action 2000 15

Thriller 1997 17

Sci-Fi 1996 20

Crime 1995 14

Drama 1994 19

Adventure 1993 23

Fantasy 1988 14

Romance 1984 26

Comedy 1984 26

Musical 1965 24
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still overfit worse than the shallow net, logging an average F1 of 0.204 and even more 

inconsistent precision and recall on a class-by-class basis.

After 4 layers, DNNs simply hit a wall and a new approach needs to be taken, one 

that can take advantage of the high-dimensionality of the data and the time-dependent 

features encoded in the samples.

Convolutional Neural Network 

Convolution neural networks can do two things better than simple deep networks. 

First, they are better at handling high dimensional data, because their neurons are not fully 

connected, but rather locally connected. Second, this local connectivity allows for the 

detection of translated, rotated, or scaled features. For these reasons, convolutional 

networks are the state of the art for image recognition.

A convolutional layer has 3 dimensions; conceptualizing the architecture can be a 

challenge as the term “layer” is now overdetermined. Here, “layer” refers to the three-

dimensional convolutional layer, and “slice” refers to the neuron arrays along the depth of 

the layer. Each slice depth-wise represents the activations a different “kernel” or “filter” as it 

is convolved across an input array. The size of the slices is dictated by the filter size, often 

something like (3x3) or (2x2), and how they are “strided” across the input array. These filters 

downsample the input, and deliver an activation that describes the local features. The 

weights of each neuron are shared across all the neurons in the slice, so each slice shows the 

activation of the same filter in different localities on the input. This weight sharing greatly 
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reduces the number of parameters in the network, replacing millions of weak neurons with a 

few thousand highly descriptive ones.

For example, a convolutional layer with 4 filters of size (2x2) and a stride of 1 pixel, 

looking at a 10x10 grayscale image, will be 9x9x4. The layer would be able to signal the 

presence of 4 different features anywhere on the image. Each neuron has 4 weights (plus a 

bias), and shares them with all other neighboring neurons in its filter slice of the 3D layer. 

Thus, the number of parameters to update for the entire convolutional layer is only 20 (filter 

size+1 x number of filters x the number of channels). A fully connected layer with the same 

number of neurons would have (81 x 4 x 100) + 100, or 32,500 weights!

Figure 5. Convolutional Network Architecture

As a CNN is deepened, the neurons capture hierarchies of simple features like edges 

and construct filters that can detect complex shapes at any location. For musical signals in 

the form of spectrograms, this translates to the encoding of a position in time or frequency 

of a consistent feature.
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Hyper-Parameters and Results 

4 convolutional layers were interposed underneath the best scoring fully-connected 

model. Again, hyper-parameters were tested by exhaustive grid search and evaluated by 

validation loss and average F1-score. With the increased number of layers (now 16 including 

max-pool and dropout layers), there are a much greater number of hyper-parameters to test. 

The final hyper-parameters selected are therefore by no means the final word on the 

potential of such a network, but they provide a window onto the capabilities of the model. 

Exhaustive grid search over all parameters for such a large network performs equally well or 

worse than randomized search or hyper-parameters tuned by an additional regressor, e.g. an 

SVM.

The top-performing CNN significantly bested the fully-connected network, and was 

generally more responsive to increased depth, width, and training epochs. The best 

validation loss achieved was 1.791 in 655 epochs. Below is an F1-score comparison class-by-

class between the fully-connected and convolutional network.
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Table 3

F1-scores by Class for Fu#y-Connected and Convolutional Networks

Discussion 

While a single deep convolutional network demonstrated a significant improvement 

over the fully-connected network, it still made far too many misclassifications to be of any 

practical use. Some of these issues can be traced to the organization of the dataset. Part of 

the problem is that a simple softmax classification, which clamps to a single class, is 

inappropriate for a dataset in which each parent track has as many as three class labels. 

Secondly, since identical samples recur in disparate classes, it’s possible that they knock the 

classifier back and forth during the training phase. or worse, distort the cost function when 

a sample from the training set recurs in the validation set with a different label. To an 

extent, this would prevent over-fitting, but with the average sample occurring in more than 

Class Fully-Connected Model Convolutional Model Change

Sci-Fi 0.008 0.220 +0.212

Romance 0.027 0.176 +0.149

Musical 0.356 0.483 +0.127

Thriller 0.042 0.137 +0.095

Crime 0.193 0.202 +0.09

Fantasy 0.113 0.202 +0.089

Drama 0.014 0.101 +0.085

Comedy 0.022 0.165 +.143

Action 0.233 0.219 -0.014

Adventure 0.204 0.196 -0.08
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two classes, the distortion is very likely to be a significant hindrance to proper convergence, 

by inflating the validation loss and initiating early-stopping too soon.

Ensemble of Convolutional Networks 

To increase the expressiveness of the model and compensate for conflicting training 

examples, an ensemble of ten deep convolutional binary classifiers (based on the best CNN 

hyper-parameters) was trained, each classifying one-vs-all. To allow for multi-label 

classification, the output neuron in each network was set to a sigmoid regression function 

instead of softmax, delivering a measure of the “confidence” of 

the binary classification. The collected estimations were then 

ranked and evaluated on multi-label metrics. This simple ensemble method is called 

“bagging” (boostrap aggregating) (Breiman 1996). For each class, the corresponding model 

is trained of the full training set of the “positive” class and a random uniform sampling of 

the “negative” classes. No single classifier is trained on the full dataset, but the full ensemble 

sees every example at least once and the vast majority multiple times.

Results 

Unsurprisingly, each binary classifier converged to a much lower validation loss than 

the 10-class models, averaging 0.22 over all models. While this metric cannot be directly 

compared with the 10-class metrics, it is indicative of the increased strength of the network 

on a simpler problem.

rank ij = {k : f̂ik ≥ f̂ij}

L = {k : yik = 1, f̂ik ≥ f̂ij}
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F1-scores for multi-label classification are not an especially useful metric, especially 

on a ranked list like this ensemble produces. However, there are alternative metrics that can 

provide some insight into the effectiveness of the ensemble.

Coverage error is a metric that measures the recall of a multi-label classifier. It 

calculates the average number of labels that must be selected from the predictions to fully 

recall all the relevant labels. 

with

Label rank average precision measures the average, over each class, of the number of 

relevant labels retrieved as a fraction of the total retrievals.

with �

The ensemble, when tagging the 10-second samples individually, has a coverage error 

of 5.52. The best possible score for coverage error is equal to the average number of labels 

per track: 2.33. The classifier estimates slightly more than one incorrect label for every 

correct. The LRAP score is 0.597 out of 1.000. 

coverage (y, f̂ ) = 1
nsamples

max j:yij=1
i=0

nsamples−1

∑ rankij

LRAP (y, f̂ ) = 1
nsamples

1
yii=0

nsamples−1

∑
Lij

rank ijj:yij =1
∑
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There is still room for improvement, as the test set consists of complete families of 

track samples. Instead of tagging individual samples, it can be better to aggregate the 

predictions and calculate the average ranking across the entire track. Average predictions 

are much better than individual predictions, with coverage error falling to 5.02 and precision 

edging up to 0.618 out of 1.000. Taking the coverage error, we can threshold the predicted 

labels to the top five and calculate the recall, precision and F1-score (Table 4). Again, while 

these scores cannot be directly compared to the 10-class CNN—ranking and thresholding 

the ensemble predictions inflates recall by allowing five guesses per label instead of one—

they are indicative of generally increased performance.
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Table 4

Ba&ed, Pooled Ensemble Classification Report

  

precision   recall   f1-score  support

Action      0.39 0.92 0.55 50

Adventure      0.40 0.85 0.54 62

Comedy                       0.50 0.79 0.61 53

Crime      0.32 0.45 0.37 42

Drama      0.46 0.69 0.55 74

Fantasy      0.24 0.97 0.38 30

Musical      0.49 0.80 0.61 30

Romance      0.32 0.68 0.44 40

Sci-Fi      0.30 0.91 0.46 34

Thriller      0.33 0.89 0.48 44

avg / total      0.39 0.79 0.51 459
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Discussion 

The ensemble classifier easily outperformed the simpler classifiers, modeling the 

dataset both more accurately and expressively. Logistic regression better captures the multi-

label, multi-class nature of the data, and bagging the classifiers increases f1-scores by a factor 

of 2 or more. However, accuracy is not the end of the discussion, especially as it relates to 

training a network as the foundation of a content-based recommender agent (McNee, Riedl 

et al. 2006). For some practical uses, it can be better for a recommender agent to have a bit 

of play; “good enough” can be more productive for discovery than “perfect” (Lopresti 2001) 

(Kaminskas and Ricci 2012). This ensemble’s ability to select multiple labels generates some 

novel “mis-labelings”; depending on how one chooses to view them, these can be considered  

errors caused by weakness in the model, errors inherent to the coarse nature of the dataset 

labels, or fruitful and serendipitous descriptions that exceed the dataset labels. 

(Sturm 2013) argues that the usual classification metrics used to evaluate MGR 

models are not sufficient to establish the model’s success at modeling genre per se. A highly 

accurate classifier on an offline dataset may merely be modeling some other relationship 

between the examples that partly overlaps with genre, but does not describe genre itself. 

The Musical class in this dataset clearly carries distinguishing features (vocals, analog 

recording) that may or may not be distinguishing genre features. Vocals might be a 

generalizable genre feature, but recording technique is obviously not. An additional hurdle 

to true genre classification is the overdetermination of the term itself, which can refer to a 

limitless range of coarse or fine gradations of musical style (Tzanetakis and Cook 2002, 

Kaminskas and Ricci 2012). Thresholding the predictions of the ensemble to match the 
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number of target labels, individual classifications can be investigated for possible productive 

mislabeling, indicating whether the model is pushing against the limitations of the dataset 

labels, or simply failing at the task. Furthermore, misclassifications can provide insight into 

the prototypical classes. 

Table 5

Accurate Predictions (3 targets)

Table 6

Accurate Predictions (2 targets)

Film Track Targets Predictions

The Wedding Banquet Turkish March Comedy, Drama, 
Romance

Comedy, Drama, 
Romance

Star Trek: Nemesis A New Friend Action, Adventure, Sci-Fi Action, Adventure, Sci-Fi

Hello, Dolly! Hello, Dolly! Comedy, Musical, 
Romance

Comedy, Musical, 
Romance

Inside Man Dr. Phil Crime, Drama, Thriller Crime, Drama, Thriller

Escape from New York Over the Wall Action, Sci-Fi, Thriller Action, Sci-Fi, Thriller

Film Track Targets Predictions

The Witches of Eastwick The Dance of the 
Witches Comedy, Fantasy Comedy, Fantasy

La Tenta Rossa The Rent Tent (Waltz) Adventure, Fantasy Adventure, Fantasy

Mysterious Island The Giant Crab Adventure, Sci-Fi Adventure, Sci-Fi

Mary Poppins The Bird Woman Comedy, Fantasy Comedy, Fantasy

The Reader Go Back To Your Friends Drama, Romance Drama, Romance

Harry Potter & The 
Chamber of Secrets The Chamber of Secrets Adventure, Fantasy Adventure, Fantasy
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Table 7

Descriptive Mislabeling or Over-labeling

Film Track Targets Predictions

The Grand Budapest 
Hotel

The Cold-Blooded 
Murder of Deputy 

Vilmos Kovacs
Adventure, Comedy Crime, Thriller, Sci-Fi

The Wizard of Oz The Jitterbug Adventure, Fantasy Musical, Comedy, 
Romance

The Dark Knight Rises A Storm Is Coming Action, Adventure Action, Thriller, Sci-Fi

The Truman Show Powaqqatsi - 5. Anthem Comedy, Sci-Fi Action, Sci-Fi, Thriller

Harry Potter & The 
Deathly Hallows, Part 1 Rescuing Hermione Adventure, Fantasy Adventure, Action, 

Fantasy

Mary Poppins Let’s Go Fly A Kite Comedy, Fantasy Musical, Fantasy, 
Comedy

War of the Worlds Escape from the Basket Adventure, Sci-Fi, 
Thriller Action, Sci-Fi, Adventure

Superbad Soul Finger Comedy Crime, Comedy, Drama

Natural Born Killers The Future Crime Comedy, Crime, Drama

O Brother, Where Art 
Thou?

Down to the River to 
Pray Crime Drama, Fantasy, Crime

The 13th Warrior Eaters of the Dead Action, Adventure Fantasy, Action, Sci-Fi

American Hustls Jeep’s Blues Crime, Drama Comedy, Romance, 
Crime
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Table 8

Total Misclassification

Even the worst failures of the classifier can be parsed by a closer investigation of the 

individual tracks. A few examples are investigated here beginning with the first track in 

Table 7: “The Cold-Blooded Murder of Deputy Vilmos Kovacs” by Alexander Desplat, from 

Wes Anderson’s The Grand Budapest Hotel.

The two ground truth tags for the film are Comedy and Adventure, but the classifier 

tags the track with Crime, Thriller and Sci-Fi. Even without hearing the track, we can see 

from the title that the underscore accompanies an intense scene of suspense and violence. 

Sure enough, the track is rhythmically propulsive and sparsely instrumented, with timpani 

and snare drums in the foreground, blended with twangy plucked strings and a murmuring 

tone-wheel organ. The moment of the murder is highlighted by a cymbal crash and booming 

bass drum. The materials are harmonically repetitive and rhythmically syncopated. While 

Film Track Targets Predictions

Sneakers The Hand-Off Comedy, Crime, Drama Action, Sci-Fi, Adventure

Gangs of New York Shimmy She Wobble Crime Comedy, Action, Drama

Taxi Driver Diary of a Taxi Driver Crime, Drama Comedy, Musical, 
Fantasy

L.A. Confidential Shootout Crime, Drama Action, Sci-Fi, Adventure

Once Upon a Time in 
Mexico Malagueña Action, Thriller Drama, Comedy, 

Romance

The Theory of 
Everything London, 1988 Drama, Romance Action, Sci-Fi, Fantasy

Jaws One Barrel Chase Drama, Thriller Comedy, Romance, 
Fantasy
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not accurate to the film as a whole, the estimated tags fit the character of the track very 

well. However, the classifier was unable to detect the certain ironic melodrama common to 

the score’s of Anderson’s films, which would come across to a human expert and suggest the 

comedic element of the film’s world.

Next, also from Table 7, we look at two tracks that are given nearly the same tags: the 

Bar-Kays 1967 hit “Soul Finger” from Superbad, and Leonard Cohen’s “The Future”, from 

Oliver Stone’s Natural Born Ki#ers. Each track is mislabeled with Crime and Comedy, 

respectively. Musically, the tracks have some surface similarities: electric instrumentation, 

steady back-beats, 60’s pop. It’s very interesting that both films are different sides of the 

pseudo-Tarantino coin—Natural Born Ki#ers is a frenzy of stylized violence set to a classic 

pop soundtrack, and Superbad is a caper of teen-misdemeanors ironically glossed with the 

aesthetics of Reservoir Dogs or Jackie Brown. Each have an element of Comedy and Crime, 

but heavily biased toward one or the other.

O Brother, Where Art Thou?, from which the next track on Table 7 is sampled, has the 

exact same ground-truth label as Natural Born Ki#ers: simply, Crime. The two films could 

hardly be more different, and the classifier captures the elements of Drama and Fantasy in 

the sampled track, “Down to the River to Pray”. The cue is a stirring spiritual, sung by a 

choir of unaccompanied voices. The arrangement is lush and spacious, and accompanies a 

scene of the heroes stumbling upon a church congregation singing in the wilderness, tinged 

with the magical realism and mythical themes that run through the film. In each of these 

tracks, the classifier has failed to match the target labels, but the suggested labels exceed the 

ground-truth and capture details in the individual tracks.
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None of the tracks in Table 8 were tagged with a single accurate label. At the top of 

the list is “The Hand-off”, from the comedic crime drama Sneakers, incorrectly tagged with 

the Action, Sci-Fi and Adventure labels. Again, the track title offers a clue to the 

misclassification; the cue is the underscoring for a tense and suspenseful scene. The 3:07 

track is composed of two contrasting elements: one highly dissonant and rhythmic, centered 

around snare drum and deep staccato piano clusters; the other mysterious and ethereal, with 

legato melodies in female voice and soprano saxophone, accompanied by chiming woodwind 

chords and high violin tremolos. While not especially clever (Thriller is probably the most 

apt tag for the track), the Action and Sci-Fi elements are present in the audio.

“Shimmy She Wobble”, off of Martin Scorsese’s Gangs of New York is a very unusual 

track for the dataset. Apparently a field recording of a rural Southern fife-and-drum band, 

the cue is a blend of background voices, rollicking snare drums, bass drum and a single fife. 

In the film it partly accompanies a scene of the Five Points gangs assembling for battle in 

the streets of 19th century Manhattan. The film is tagged on IMDB as simply Crime; the 

classifier labeled the track with Comedy, Action and Drama. The comedic element here is a 

total mystery. The best guess is that the background voices and timbre of the fife correlate 

somewhat with the Comedy class. The Action tag, however, gives support to the idea that 

noisy percussion is a significant element of the Action prototype.

“Diary of a Taxi Driver” is, like “Shimmy She Wobble”, curiously mistagged as 

Comedy. Another unusual track from another Scorsese film, most of “Diary” is occupied by 

monologue from Robert DeNiro, underscored by Bernard Herrmann’s clashing brass and 

rolling cymbals. This provides a further clue that the classifier is somehow grappling with 

spoken work examples by labeling them as Comedy. How it came to do so is a mystery, but 
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analysis of the dataset could confirm whether a significant proportion of Comedy examples 

contain speaking voices. The whole answer is certainly more complex, but such a connection 

would be a promising place to begin.

Conclusion 

These experiments demonstrate that an ensemble of deep convolutional binary 

classifiers, trained on simple MFCC features, can successfully identify the film genres 

associated with film soundtracks. A comprehensive dataset of film audio features was 

collected and labeled with transparently sourced and consistent film genre labels. The 10 

most numerous classes were selected for training and testing. 

In an attempt to find the best model, three basic architectures were evaluated and 

built upon in sequence, up to the final bagging model of 10 binary classifiers. It was 

demonstrated, through the significantly improved accuracy of the deep convolutional 

model, that the best class features were invariant to scale and translation, and therefore 

timbre and time dependent. 

Upon closer analysis of the dataset, it was determined that a fully-connected, 

softmax classifier was inappropriate for the data as organized, and would achieve suboptimal 

results even with ideal hyper-parameters. A final ensemble model was proposed to extend 

the power of the deep convolutional architecture and avoid clashing training examples and 

premature early stopping. Furthermore, by showing the flexibility, accuracy, and 

expressiveness of the bagged ensemble of CNNs, it demonstrates that such a model can 

make productive “mis-labelings” that describe the practical uses of the particular audio 
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examples in finer detail than the ground-truth labels themselves. In the final aim of this 

thesis, which is to pave the way for a practical recommender agent for music supervisors and 

recording artists, such a system would not only aid search but also discovery and novelty.

The model described is only a snapshot of continuing research, as the model 

continues to respond favorably to expanded architectures and better tuned hyper-

parameters. A re-evaluation and re-labeling of the dataset would certainly be promising, as it 

could remove outliers and present the examples in a multi-label format that could train a 

single fully connected logistic network to estimate multiple tags. In addition, more 

sophisticated ensembling, such as boosting, could increase classification accuracy. Finally, 

given enough memory space and time for training, the convolutional networks could train 

on raw spectrogram data, or at least an alternative compression feature with less of the 

approximation inherent to MFCCs. Research has shown that raw spectrograms can 

outperform MFCCs and similar features on speech recognition and music classification, and 

it’s probable that there are pitch-dependent features that correlate strongly to film score 

genres.
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Appendix 1

Neural Network Architectures

2 Layer DNN 6 Layer CNN 5 Layer CNN 
Ensemble (x 10)

Input Dimension 1 x 4000 1 x 40 x 100

Convolutional 
Layer

/ 32 filters
5 x 5

/

Max Pool Layer / 2 x 2 /

Dropout / 0.1 /

Convolutional 
Layer

/ 64 filters
3 x 3

32 filters
3 x 3

Max Pool Layer / 2 x 2 2 x 2

Dropout / 0.2 0.1

Convolutional 
Layer

/ 128 filters
2 x 2

64 filters
2 x 2

Max Pool Layer / 2 x 2 2 x 2

Dropout / 0.3 0.2

Convolutional 
Layer

/ 256 filters
2 x 2

128 filters
2 x 2

Max Pool Layer / 2 x 2 2 x 2

Dropout 0.2 0.4 0.3

Dense Layer 50 50 50

Dropout 0.5 0.5 0.5

Dense Layer 50 50 50

Output Layer 10
(softmax)

10
(softmax)

1
(sigmoid)
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